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Introduction – Intended Audience

• Intended audience for this tutorial session: scientific users and others who wish to:

– Understand overall design concepts and motivations
– Work with the code
– Extend/modify the code to enable their work/research
– Address problems as they arise
– Adapt the code to take advantage of local computing resources



Introduction – WRF Resources

• WRF project home page

– http://www.wrf-model.org

• WRF users page (linked from above)

– http://www.mmm.ucar.edu/wrf/users

• On line documentation (also from above)

– http://www.mmm.ucar.edu/wrf/WG2/software_v2

• WRF users help desk

– wrfhelp@ucar.edu

http://www.wrf-model.org/
http://www.mmm.ucar.edu/wrf/users
http://www.mmm.ucar.edu/wrf/WG2/software_v2
mailto:rfhelp@ucar.edu


Introduction – WRF Software Characteristics

• Developed from scratch beginning around 1998, primarily Fortran and C

• Requirements emphasize flexibility over a range of platforms, applications, users; 

performance

• WRF develops rapidly. First released Dec 2000; Current Release WRF v2.1.2 

(January 2006)

• Supported by flexible efficient architecture and implementation called the WRF 

Software Framework



Introduction - WRF Software Framework Overview

• Implementation of  WRF Architecture

– Hierarchical organization
– Multiple dynamical cores
– Plug compatible physics
– Abstract interfaces (APIs) to 

external packages
– Performance-portable

• Designed from beginning to be adaptable 

to today’s computing environment for 

NWP

http://box.mmm.ucar.edu/wrf/WG2/bench/

ARW solver

Physics Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics

NMM solver

Top-level Control,
Memory Management, Nesting, 

Parallelism, External APIs 
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Introduction - WRF Supported Platforms

Vendor Hardware OS Compiler
Apple (*) G4/G5 MacOS IBM

X1, X1e UNICOS Cray
Opteron Linux PGI
Alpha Tru64 Compaq

Linux Intel
HPUX HP

IBM Power-3/4/5; BG/L (**) AIX IBM
Itanium-2 Linux Intel

MIPS IRIX SGI
Sun (*) UltraSPARC Solaris Sun

Xeon and Athlon
Itanium-2 and Opteron

Cray Inc.

Linux PGI, Intel, Pathscale

HP/Compaq

SGI

various

Itanium-2

(*) dm-parallel not supported yet; (**) Experimental, not released
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APPLICATION

HARDWARE

SYSTEM Hardware: The Computer

• The ‘N’ in NWP

• Components

– Processor
• A program counter
• Arithmetic unit(s)
• Some scratch space (registers)
• Circuitry to store/retrieve from memory device
• Cache

– Memory
– Secondary storage
– Peripherals

• The implementation has been continually refined, but the basic idea hasn’t 

changed much



Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 52 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

4-way superscalar

64-bit floating point precision

1.4 Mbytes (shown)

> 500 Mbytes (not shown)

A computer in 2002

IBM p690
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APPLICATION

HARDWARE

SYSTEM …how we use it has

• Fundamentally, processors haven’t changed much since 1960

• Quantitatively, they haven’t improved nearly enough

– 100,000x increase in peak speed
– > 4,000x increase in memory size
– These are too slow and too small for even a moderately large NWP run today

• We make up the difference with parallelism

– Ganging multiple processors together to achieve 1011-12 flop/second
– Aggregate available memories of 1011-12 bytes

~100,000,000,000 flop/s
48 12km WRF CONUS in under 15 minutes



Parallel Computing Terms -- Hardware

• Processor: 

– A device that reads and executes instructions in sequence to produce perform 
operations on data that it gets from a memory device producing results that are stored 
back onto the memory device

• Node: One memory device connected to one or more processors. 

– Multiple processors in a node are said to share-memory and this is “shared memory 
parallelism”

– They can work together because they can see each other’s memory
– The latency and bandwidth to memory affect performance

APPLICATION

HARDWARE

SYSTEM



Parallel Computing Terms -- Hardware

• Cluster: Multiple nodes connected by a network

– The processors attached to the memory in one node can not see the memory for 
processors on another node

– For processors on different nodes to work together they must send messages between 
the nodes. This is  “distributed memory parallelism”

• Network: 

– Devices and wires for sending messages between nodes
– Bandwidth – a measure of the number of bytes that can be moved in a second
– Latency – the amount of time it takes before the first byte of a message arrives at its 

destination

APPLICATION
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Parallel Computing Terms – System Software

• Process: 

– A set of instructions to be executed on a processor
– Enough state information to allow process execution to stop on a

processor and be picked up again later, possibly by another 
processor

• Processes may be lightweight or heavyweight

– Lightweight processes, e.g. shared-memory threads, store very 
little state; just enough to stop and then start the process

– Heavyweight processes, e.g. UNIX processes, store a lot more 
(basically the memory image of the job)

“The only thing one does directly with hardware is pay for it.”

APPLICATION
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APPLICATION

HARDWARE

SYSTEM Parallel Computing Terms – System Software

• Every job has at least one heavy-weight process. 

– A job with more than one process is a distributed-memory parallel job 
– Even on the same node, heavyweight processes do not share memory†

• Within a heavyweight process you may have some number of lightweight processes, 

called threads.
– Threads are shared-memory parallel; only threads in the same memory space can 

work together. 
– A thread never exists by itself; it is always inside a heavy-weight process.

• Heavy-weight processes are the vehicles for distributed memory parallelism

• Threads (light-weight processes) are the vehicles for shared-memory parallelism



Jobs, Processes, and Hardware

• Message Passing Interface – MPI, referred to as the communication layer

• MPI is used to start up and pass messages between multiple heavyweight processes

– The mpirun command controls the number of processes and how they are mapped 
onto nodes of the parallel machine

– Calls to MPI routines send and receive messages and control other interactions 
between processes

– http://www.mcs.anl.gov/mpi

• OpenMP is used to start up and control threads within each process 

– Directives specify which parts of the program are multi-threaded
– OpenMP environment variables determine the number of threads in each process
– http://www.openmp.org

• OpenMP is usually activated via a compiler option, MPI is usually activated via the compiler name

• The number of processes (number of MPI processes times the number of threads in each process) 

usually corresponds to the number of processors

APPLICATION

HARDWARE

SYSTEM

http://www.mcs.anl.gov/mpi
http://www.openmp.org/


Examples
• If the machine consists of 4 nodes, each with 4 processors, how many different ways can 

you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
mpirun –np 16 wrf.exe

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI

4 threads

1 MPI
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Examples
• If the machine consists of 4 nodes, each with 4 processors, how many different ways can 

you run a job to use all 16 processors?

– 4 MPI processes, each with 4 threads

setenv OMP_NUM_THREADS 4
mpirun –np 4 wrf.exe

– 8 MPI processes, each with 2 threads

setenv OMP_NUM_THREADS 2
mpirun –np 8 wrf.exe

– 16 MPI processes, each with 1 thread

setenv OMP_NUM_THREADS 1
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4 MPI

4 MPI 4 MPI

4 MPI



Examples (cont.)

• Note, since there are 4 nodes, we can never have fewer than 4 MPI processes 

because nodes do not share memory

• What happens on this same machine for the following?

setenv OMP_NUM_THREADS 4
mpirun –np 32



APPLICATION

HARDWARE

SYSTEM Application:  WRF

• WRF can be run serially or as a parallel job

• WRF uses domain decomposition to divide total amount of work over parallel 

processes 

• Since the process model has two levels (heavy-weight and light-weight = MPI and 

OpenMP), the decomposition of the application over processes has two levels:

– The domain is first broken up into rectangular pieces that are assigned to
heavy-weight processes. These pieces are called patches

– The patches may be further subdivided into smaller rectangular pieces that are 
called tiles, and these are assigned to threads within the process.



Parallelism in WRF: Multi-level Decomposition

• Single version of code for efficient execution on:

– Distributed-memory
– Shared-memory (SMP)
– Clusters of SMPs
– Vector and microprocessors

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain  allocated to a distributed memory  node, this is the 
scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a node; this is 
also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory parallelism is over 

Logical 
domain

1 Patch, divided 
into multiple tiles

Inter-processor 
communication
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tiles within patches



Distributed Memory Communications

Communication is required between patches when a 
horizontal index is incremented or decremented on the right-
hand-side of an assignment.  On a patch boundary, the 
index may refer to a value that is on a different patch.

Following is an example code fragment that requires 
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment. 

These are horizontal data dependencies because the 
indexed operands may lie in the patch of a neighboring 
processor. That neighbor’s updates to that element of the 
array won’t be seen on this processor. We have to 
communicate. 



(module_diffusion.F )

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             &
H2avg(i,k+1,j)-H2avg(i,k,j)              &

)/dzetaw(k)                     &
)

ENDDO
ENDDO
ENDDO

. . .

Distributed Memory Communications



Distributed Memory MPI 
Communications
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• Halo updates

memory on one processor

*
+ *
*

*

memory on neighboring processor

*



Distributed Memory (MPI) 
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Distributed Memory (MPI) 
Communications
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• Halo updates

• Periodic boundary updates

• Parallel transposes

• Nesting scatters/gathers

all y on
patch

all z on
patch

all x on
patch



• Halo updates

• Periodic boundary updates

• Parallel transposes

• Nesting scatters/gathers

Distributed Memory (MPI) 
Communications

APPLICATION

HARDWARE

SYSTEM

NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km



Review – Computing Overview
Shared

Memory
Parallel

Distributed 
Memory
Parallel

APPLICATION
(WRF)

Domain contains Patches contain Tiles

Job contains Processes contain Threads

Cluster contains Nodes contain Processors

SYSTEM
(UNIX, MPI, OpenMP)

HARDWARE
(Processors, Memories, Wires)
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WRF Software Overview

• Architecture

• Directory structure

• Model Layer Interface

• Data Structures

• I/O

• Registry



WRF Software Architecture

• Hierarchical software architecture

– Insulate scientists' code from parallelism and other architecture/implementation-specific 
details

– Well-defined interfaces between layers, and external packages for communications, I/O, and 
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF.

Registry



WRF Software Architecture

• Driver Layer

– Allocates, stores, decomposes model domains, represented abstractly as single data objects
– Contains top-level time loop and algorithms for integration over nest hierarchy
– Contains the calls to I/O, nest forcing and feedback routines supplied by the Mediation Layer
– Provides top-level, non package-specific access to communications, I/O, etc.
– Provides some utilities, for example module_wrf_error, which is used for diagnostic prints and error 

stops

Registry



WRF Software Architecture

• Mediation Layer
– Provides to the Driver layer

• Solve routine, which takes a domain object and advances it one time step
• I/O routines that Driver calls when it is time to do some input or output operation on a domain
• Nest forcing, interpolation, and feedback routines
• The Mediation Layer and not the Driver knows the specifics of what needs to be done

– The sequence of calls to Model Layer routines for doing a time-step is known in Solve routine
– Responsible for dereferencing driver layer data objects so that individual fields can be passed to Model 

layer Subroutines
– Calls to message-passing are contained here as part of solve routine

Registry



WRF Software Architecture

• Model Layer
– Contains the information about the model itself, with machine architecture and implementation aspects 

abstracted out and moved into layers above
– Contains the actual WRF model routines are written to perform some computation over an arbitrarily 

sized/shaped subdomain
– All state data objects are simple types, passed in through argument list
– Model Layer routines don’t know anything about communication or I/O; and they are designed to be 

executed safely on one thread – they never contain a PRINT, WRITE, or STOP statement
– These are written to conform to the Model Layer Subroutine Interface (more later) which makes them 

“tile-callable”

Registry



WRF Software Architecture

• Registry: an “Active” data dictionary

– Tabular listing of model state and attributes 
– Large sections of interface code generated automatically
– Scientists manipulate model state simply by modifying Registry, without further knowledge of 

code mechanics 

Registry



Call Structure superimposed on Architecture

wrf (main/wrf.F)wrf (main/wrf.F)

integrate (frame/module_integrate.F)integrate (frame/module_integrate.F)

KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
KFCPS  (phys/module_ra_kf.FKFCPS  (phys/module_ra_kf.F
WSM5  (phys/module_mp_wsm5.FWSM5  (phys/module_mp_wsm5.F

advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)
advance_uv (dyn_em/module_small_step_em.F)advance_uv (dyn_em/module_small_step_em.F)

microphysics_driver (phys/module_microphysics_driver.F)microphysics_driver (phys/module_microphysics_driver.F)

solve_em (dyn_em/solve_em.F)solve_em (dyn_em/solve_em.F)

solve_interface (share/solve_interface.F)solve_interface (share/solve_interface.F)
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WRF Model Directory Structure

page 5, 
WRF D&I Document

driver
mediation

model
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WRF Model Layer Interface

• Mediation layer / Model Layer Interface

• All state arrays passed through argument list as simple (not 
derived) data types

• Domain, memory, and run dimensions passed unambiguously in 
three physical dimensions

• Model layer routines are called from mediation layer in loops over 
tiles, which are multi-threaded

• Restrictions on model layer subroutines

– No I/O, communication, no stops or aborts (use 
wrf_error_fatal in frame/module_wrf_error.F)

– No common/module storage of decomposed data 
(exception allowed for set-once/read-only tables)

– Spatial scope of a Model Layer call is one “tile”
– Temporal scope of a call is limited by coherency

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve
DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver



WRF Model Layer Interface

• Mediation layer / Model Layer Interface

• Model layer routines are called from mediation layer in loops over 
tiles, which are multi-threaded

• All state arrays passed through argument list as simple data types

• Domain, memory, and run dimensions passed unambiguously in 
three physical dimensions

• Restrictions on model layer subroutines

– No I/O, communication, no stops or aborts (use 
wrf_error_fatal in frame/module_wrf_error.F)

– No common/module storage of decomposed data 
(exception allowed for set-once/read-only tables)

– Spatial scope of a Model Layer call is one “tile”
– Temporal scope of a call is limited by coherency

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

SUBROUTINE solve_xxx ( 
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine( arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte )

END DO
. . .

END SUBROUTINE

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)
loc(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

template for model layer subroutine       

SUBROUTINE model_subroutine ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)
loc(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions



template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

template for model layer subroutine       

SUBROUTINE model ( & 
arg1, arg2, arg3, … , argn,   &
ids, ide, jds, jde, kds, kde, &  ! Domain dims
ims, ime, jms, jme, kms, kme, &  ! Memory dims
its, ite, jts, jte, kts, kte )  ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

! Executable code; loops run over tile 
! dimensions
DO j = jts, jte

DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide)

loc(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy 

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions

• Patch dimensions
• Start and end indices of local 

distributed memory subdomain
• Available from mediation layer 

(solve) and driver layer; not usually 
needed or used at model layer



WRF Software Overview

• Architecture

• Directory structure

• Model Layer Interface

• Data Structures

• I/O

• Registry



Driver Layer Data Structures: Domain Objects

• Driver layer

– All data for a domain is a single object, a domain derived data type (DDT)
– The domain DDTs are dynamically allocated/deallocated
– Linked together in a tree to represent nest hierarchy; root pointer is 

head_grid, defined in frame/module_domain.F
– Supports recursive depth-first traversal algorithm (frame/module_integrate.F)
– Model layer

• All data objects are scalars and arrays of simple types only
• Virtually all passed in through subroutine argument lists

– Mediation layer
• One task of mediation layer is to dereference fields from DDTs
• Therefore, sees domain data in both forms, as DDT and as individual 

fields
– The name of a data type and how it is referenced may differ depending on the 

level of the architecture

1

2
4

3

head_grid 1

4

32



Data Structures

• WRF Data Taxonomy

– State data
– Intermediate data type 1 (I1)
– Intermediate data type 2 (I2)
– Heap storage (COMMON or Module data)



Mediation/Model Layer Data Structures: 
State Data

• Persist for the duration of a domain

• Represented as fields in domain data structure

– Memory for state arrays are dynamically allocated, only big enough to hold the 
local subdomain’s (ie. patch’s) set of array elements 

– Always memory dimensioned
– Declared in Registry using state keyword

• Only state arrays can be subject to I/O and Interprocessor communication



Grid Representation in Arrays 

• Increasing indices in WRF arrays run

– West to East   (X, or I-dimension)
– South to North (Y, or J-dimension)
– Bottom to Top (Z, or K-dimension)

• Storage order in WRF is IKJ but this is a WRF Model convention, not a restriction of 

the WRF Software Framework



Grid Representation in Arrays

• The extent of the logical or domain dimensions is always the "staggered" grid 

dimension. That is, from the point of view of a non-staggered dimension, there is 

always an extra cell on the end of the domain dimension

• In the case of the NMM dynamics (E-grid) neither the IDEth nor JDEth index is ever 

used – logically all computations run from JDS..JDE-1 and IDS..IDE-1 or IDS..IDE-2 

(depending on value of J index)



WRF Software Overview

• Architecture

• Directory structure

• Model Layer Interface

• Data Structures

• I/O

• Registry



WRF I/O

• Streams: pathways into and out of model
– History + 5 auxiliary output streams
– Input + 5 auxiliary input streams
– Restart and boundary

• Attributes of streams
– Variable set

• The set of WRF state variables that comprise one read or write on a 
stream

• Defined for a stream at compile time in Registry
– Format

• The format of the data outside the program (e.g. NetCDF)
• Specified for a stream at run time in the namelist

– Additional namelist-controlled attributes of streams
• Dataset name
• Time interval between I/O operations on stream
• Starting, ending times for I/O (specified as intervals from start of run)



WRF Software Overview

• Architecture

• Directory structure

• Model Layer Interface

• Data Structures

• I/O

• Registry



WRF Registry
• "Active data-dictionary” for managing WRF data structures

– Database describing attributes of model state, intermediate, and configuration data
• Dimensionality, number of time levels, staggering
• Association with physics
• I/O classification (history, initial, restart, boundary)
• Communication points and patterns
• Configuration lists (e.g. namelists)

– Program for auto-generating sections of WRF from database: 

• 570 Registry entries ⇒ 30-thousand lines of automatically generated WRF code
• Allocation statements for state data, I1 data
• Argument lists for driver layer/mediation layer interfaces
• Interprocessor communications: Halo and periodic boundary updates, transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback and interpolation of nest data



WRF Registry
• Why?

– Automates time consuming, repetitive, error-prone programming
– Insulates programmers and code from package dependencies
– Allow rapid development
– Documents the data

• Reference: Description of WRF Registry, http://www.mmm.ucar.edu/wrf/software_v2



Registry Mechanics

%compile wrf

WRF source
*/*.F

CPP 
____________

Fortran90

wrf.exe

Registry/Registry
registry program:

tools/registry

inc/*.incl



Registry Data Base

• Currently implemented as a text file: Registry/Registry.EM

• Types of entry:

– Dimspec – Describes dimensions that are used to define arrays in the model
– State – Describes state variables and arrays in the domain structure
– I1 – Describes local variables and arrays in solve
– Typedef – Describes derived types that are subtypes of the domain structure 
– Rconfig – Describes a configuration (e.g. namelist) variable or array
– Package – Describes attributes of a package (e.g. physics)
– Halo – Describes halo update interprocessor communications
– Period – Describes communications for periodic boundary updates
– Xpose – Describes communications for parallel matrix transposes



Registry State Entry: ordinary State 

• Elements
– Entry: The keyword “state”
– Type: The type of the state variable or array (real, double, integer, logical, character, 

or derived)
– Sym: The symbolic name of the variable or array
– Dims: A string denoting the dimensionality of the array or a hyphen (-)
– Use: A string denoting association with a solver or 4D scalar array, or a hyphen
– NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for 

variables)
– Stagger: String indicating staggered dimensions of variable  (X, Y, Z, or hyphen)
– IO: String indicating whether and how the variable is subject to I/O and Nesting
– DName: Metadata name for the variable
– Units: Metadata units of the variable
– Descrip: Metadata description of the variable

• Example
#      Type Sym  Dims   Use     Tlev Stag IO       Dname Descrip

state  real  u   ikjb dyn_em 2    X  irhusdf "U"    "X WIND COMPONENT“



Registry State Entry: ordinary State 
#      Type Sym  Dims        Use     Tlev Stag IO    Dname Descrip

state  real  u   ikjb dyn_em 2   X    irhusdf "U"    "X WIND COMPONENT“

• This single entry results in 130 lines automatically added to 43 different 
locations of the WRF code:
– Declaration and dynamic allocation of arrays in TYPE(domain)

• Two 3D state arrays corresponding to the 2 time levels of U
u_1 ( ims:ime , kms:kme , jms:jme )
u_2 ( ims:ime , kms:kme , jms:jme )

• Two LBC arrays for boundary and boundary tendencies
u_b ( max(ide,jde), kms:kme, spec_bdy_width, 4 )
u_bt ( max(ide,jde), kms:kme, spec_bdy_width, 4 )

– Add u_1, u_2, u_b, and u_2 to solver argument list
– Nesting code to interpolate, force, feedback, and smooth u
– Addition of u to the input, restart, history, and LBC  I/O streams



State Entry: Defining a variable-set for an I/O stream

• Fields are added to a variable-set on an I/O stream in the Registry

#      Type Sym  Dims   Use     Tlev Stag IO    Dname Descrip

state  real  u   ikjb dyn_em 2   X    irh "U"  "X WIND COMPONENT“

IO is a string that specifies if the variable is to be subject to initial, restart, history, or 
boundary I/O.  The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), 
'r' (restart dataset), or 'b' (lateral boundary dataset).  The 'h', 'r', and 'i' specifiers may 
appear in any order or combination.  

The ‘h’ and ‘i’ specifiers may be followed by an optional integer string consisting of 
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and/or ‘5’.  Zero denotes that the variable is part of the principal 
input or history I/O stream. The characters ‘1’ through ‘5’ denote one of five 
auxiliary input or history I/O streams.



State Entry: Defining Variable-set for an I/O stream

irh -- The state variable will be included in the input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and third auxiliary history output 
streams; it has been removed from the principal history output stream, because zero is not 
among the integers in the integer string that follows the character 'h'

rh01 -- The state variable has been added to the first auxiliary history output stream; it is 
also retained in the principal history output

i205hr -- Now the state variable is included in the principal input stream as well as 
auxiliary inputs 2 and 5.  Note that the order of the integers is unimportant. The variable is 
also in the principal history output stream

ir12h -- No effect; there is only 1 restart data stream and ru added to it.



Rconfig entry

• This defines namelist entries

• Elements

– Entry: the keyword “rconfig”
– Type: the type of the namelist variable (integer, real, logical, string )
– Sym: the name of the namelist variable or array
– How set: indicates how the variable is set: e.g. namelist or derived, and if namelist, 

which block of the namelist it is set in
– Nentries: specifies the dimensionality of the namelist variable or array. If 1 (one) it is a 

variable and applies to all domains; otherwise specify max_domains (which is an 
integer parameter defined in module_driver_constants.F).

– Default: the default value of the variable to be used if none is specified in the namelist; 
hyphen (-) for no default

• Example#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1



Rconfig entry

#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1

• Result of this Registry Entry:
– Define an namelist variable “spec_bdy_width” in the 

bdy_control section of namelist.input
– Type integer (others: real, logical, character)
– If this is first entry in that section, define 

“bdy_control” as a new section in the namelist.input
file

--- File: namelist.input ---

&bdy_control
spec_bdy_width = 5,
spec_zone            = 1,
relax_zone           = 4,

. . .
/



Rconfig entry

#         Type       Sym              How set          Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1          1

• Result of this Registry Entry:
– Specifies that bdy_control applies to all domains in 

the run 
• if Nentries is “max_domains” then the entry in 

the namelist.input file is a comma-separate list, 
each element of which applies to a separate 
domain

– Specify a default value of “1” if nothing is specified in 
the namelist.input file

– In the case of a multi-process run, generate code to 
read in the bdy_control section of the namelist.input
file on one process and broadcast the value to all 
other processes

--- File: namelist.input ---

&bdy_control
spec_bdy_width = 5,
spec_zone            = 1,
relax_zone           = 4,

. . .
/



Package Entry

• Elements

– Entry: the keyword “package”,
– Package name: the name of the package: e.g. “kesslerscheme”
– Associated rconfig choice:  the name of a rconfig variable and the value of that variable 

that choses this package
– Package state vars: unused at present; specify hyphen (-)
– Associated 4D scalars: the names of 4D scalar arrays and the fields within those arrays 

this package uses

• Example# specification of microphysics options
package   passiveqv mp_physics==0    - moist:qv
package   kesslerscheme mp_physics==1    - moist:qv,qc,qr
package   linscheme mp_physics==2    - moist:qv,qc,qr,qi,qs,qg
package   ncepcloud3    mp_physics==3    - moist:qv,qc,qr
package   ncepcloud5    mp_physics==4    - moist:qv,qc,qr,qi,qs

# namelist entry that controls microphysics option
rconfig integer     mp_physics   namelist,namelist_04     max_domains 0



Examples: working with WRF software

Add a new physics package with time 
varying input source to the model



Example: Input periodic SSTs

• Problem: adapt WRF to input a time-varying lower boundary condition, e.g. SSTs, 

from an input file for a new surface scheme

• Given: Input file in WRF I/O format containing 12-hourly SST’s

• Modify WRF model to read these into a new state array and make available to WRF 

surface physics



Example: Input periodic SSTs

• Steps

– Add a new state variable and definition of a new surface layer 
package that will use the variable to the Registry

– Add to variable stream for an unused Auxiliary Input stream
– Adapt physics interface to pass new state variable to physics
– Setup namelist to input the file at desired interval



Example: Input periodic SSTs

• Add a new state variable to Registry/Registry.EM and put it in the variable set for 

input on AuxInput #3

– Also added to History and Restart

• Result:

– 2-D variable named nsst defined and available in 
solve_em

– Dimensions: ims:ime, jms:jme
– Input and output on the AuxInput #3 stream will include the 

variable under the name NEW_SST

#     type  symbol dims use  tl stag  io dname description       units
state real  nsst ij misc 1  - i3rh  "NEW_SST" "Time Varying SST" "K“



Example: Input periodic SSTs

• Pass new state variable to surface physics

--- File: dyn_em/solve_em.F ---

CALL surface_driver(                                          &
. . .

! Optional
&        ,QG_CURR=moist(ims,kms,jms,P_QG), F_QG=F_QG                 &
&        ,NSST=nsst & ! new
&        ,CAPG=capg, EMISS=emiss, HOL=hol,MOL=mol                    &
&        ,RAINBL=rainbl &
&        ,RAINNCV=rainncv,REGIME=regime,T2=t2,THC=thc &
&        ,QSG=qsg,QVG=qvg,QCG=qcg,SOILT1=soilt1,TSNAV=tsnav &
&        ,SMFR3D=smfr3d,KEEPFR3DFLAG=keepfr3dflag          &
&                                                          )



Example: Input periodic SSTs

• Add new variable nsst to Physics Driver in Mediation Layer

• By making this an “Optional” argument, we preserve the driver’s compatibility with other 
cores and with versions of WRF where this variable hasn’t been added.

--- File: phys/module_surface_driver.F ---

SUBROUTINE surface_driver(                                   &
. . .

!  Other optionals (more or less em specific)
&          ,nsst &
&          ,capg,emiss,hol,mol &
&          ,rainncv,rainbl,regime,t2,thc                   &
&          ,qsg,qvg,qcg,soilt1,tsnav                       &
&          ,smfr3d,keepfr3dflag                            &

!  Other optionals (more or less nmm specific)
&          ,potevp,snopcx,soiltb,sr &

))
. . .

REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, INTENT(INOUT)::   nsst



Example: Input periodic SSTs

• Add call to Model-Layer subroutine for new physics package to Surface Driver

• Note the PRESENT test to make sure new optional variable nsst is available

--- File: phys/module_surface_driver ---

!$OMP PARALLEL DO   &
!$OMP PRIVATE ( ij, i, j, k )

DO ij = 1 , num_tiles
sfclay_select: SELECT CASE(sf_sfclay_physics)

CASE (SFCLAYSCHEME)
. . .

CASE (NEWSFCSCHEME)  ! <- This is defined by the Registry “package” entry

IF (PRESENT(nsst))  THEN
CALL NEWSFCCHEME(                                   &

nsst,                                                &
ids,ide, jds,jde, kds,kde,                           &
ims,ime, jms,jme, kms,kme,                           &
i_start(ij),i_end(ij), j_start(ij),j_end(ij), kts,kte )

ELSE
CALL wrf_error_fatal('Missing argument for NEWSCHEME in surface driver')

ENDIF
. . .

END SELECT sfclay_select
ENDDO

!$OMP END PARALLEL DO



Example: Input periodic SSTs

• Add definition for new physics package NEWSCHEME as setting 4 for namelist
variable sf_sfclay_physics

• This creates a defined constant NEWSFCSCHEME and represents selection of the 
new scheme when the namelist variable sf_sfclay_physics is set to ‘4’ in the 
namelist.input file

• Clean –a and recompile so code and Registry changes take effect

rconfig integer  sf_sfclay_physics namelist,physics max_domains    0

package   sfclayscheme sf_sfclay_physics==1        - -
package   myjsfcscheme sf_sfclay_physics==2        - -
package   gfssfcscheme sf_sfclay_physics==3        - -
package   newsfcscheme sf_sfclay_physics==4 - -



Example: Input periodic SSTs

• Setup namelist to input SSTs from the file at desired interval

• Run code with sst_input file in run-directory

--- File: namelist.input ---

&time_control
. . .

auxinput3_inname      = "sst_input"
auxinput3_interval_mo = 0
auxinput3_interval_d  = 0
auxinput3_interval_h  = 12
auxinput3_interval_m  = 0
auxinput3_interval_s  = 0
. . .

/

. . .
&physics
sf_sfclay_physics = 4, 4, 4
. . .

/



Example: Input periodic SSTs

• A few notes…

– The read times and the time-stamps in the input file must match 
exactly

– We haven’t done anything about what happens if the file runs out
of time periods (the last time period read will be used over and
over again, though you’ll see some error messages in the output 
if you set debug_level to be 1 or greater in namelist.input)

– We haven’t said anything about what generates sst_input



Example: Working with WRF Software

• Computing and outputting a Diagnostic



Example: Compute a Diagnostic

• Problem: Output global average and global maximum and lat/lon location of 

maximum for 10 meter wind speed in WRF

• Steps:

– Modify solve to compute wind-speed and then compute the local sum and 
maxima at the end of each time step

– Use reduction operations built-in to WRF software to compute the global 
qualitities

– Output these on one process (process zero, the “monitor” process)



Example: Compute a Diagnostic

• Compute local sum and local max and the local indices of the local maximum

--- File: dyn_em/solve_em.F (near the end) ---

! Compute local maximum and sum of 10m wind-speed
sum_ws = 0.
max_ws = 0.
DO j = jps, jpe

DO i = ips, ipe
wind_vel = sqrt( u10(i,j)*u10(i,j) + v10(i,j)*v10(i,j) )
IF ( wind_vel .GT. max_ws ) THEN

max_ws = wind_vel
idex = i
jdex = j

ENDIF
sum_ws = sum_ws + wind_vel

ENDDO
ENDDO



Example: Compute a Diagnostic

• Compute global sum,  global max, and indices of the global max

! Compute global sum
sum_ws = wrf_dm_sum_real ( sum_ws )

! Compute global maximum and associated i,j point
CALL wrf_dm_maxval_real ( max_ws, idex, jdex )



Example: Compute a Diagnostic

• On the process that contains the maximum value, obtain the latitude and longitude of that 

point; on other processes set to an artificially low value.

• The use parallel reduction to store that result on every process

IF ( ips .LE. idex .AND. idex .LE. ipe .AND.  &
jps .LE. jdex .AND. jdex .LE. jpe ) THEN

glat = xlat(idex,jdex)
glon = xlong(idex,jdex)

ELSE
glat = -99999.
glon = -99999.

ENDIF

! Compute global maximum to find glat and glon
glat = wrf_dm_max_real ( glat )
glon = wrf_dm_max_real ( glon )



Example: Compute a Diagnostic

• Output the value on process zero, the “monitor”

• Output from process zero of a 4 process run

! Print out the result on the monitor process
IF ( wrf_dm_on_monitor() ) THEN

WRITE(outstring,*)'Avg. ',sum_ws/((ide-ids*1)*(jde-jds+1))
CALL wrf_message ( TRIM(outstring) )
WRITE(outstring,*)'Max. ',max_ws,' Lat. ',glat,' Lon. ',glon
CALL wrf_message ( TRIM(outstring) )

ENDIF

--- Output file: rsl.out.0000 ---
. . .

Avg.    5.159380
Max.    15.09370     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:03:00 on domain   1:    8.96500 elapsed seconds.
Avg.    5.166167
Max.    14.97418     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:06:00 on domain   1:    4.89460 elapsed seconds.
Avg.    5.205693
Max.    14.92687     Lat.    37.25022     Lon.   -67.44571

Timing for main: time 2000-01-24_12:09:00 on domain   1:    4.83500 elapsed seconds.
. . .
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Example: Compute a Diagnostic (complete)
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